51,981 research outputs found

    The Large Footprints of H-Space on Asymptotically Flat Space-Times

    Full text link
    We show that certain structures defined on the complex four dimensional space known as H-Space have considerable relevance for its closely associated asymptotically flat real physical space-time. More specifically for every complex analytic curve on the H-space there is an asymptotically shear-free null geodesic congruence in the physical space-time. There are specific geometric structures that allow this world-line to be chosen in a unique canonical fashion giving it physical meaning and significance.Comment: 7 page

    Progress in three-particle scattering from LQCD

    Full text link
    We present the status of our formalism for extracting three-particle scattering observables from lattice QCD (LQCD). The method relies on relating the discrete finite-volume spectrum of a quantum field theory with its scattering amplitudes. As the finite-volume spectrum can be directly determined in LQCD, this provides a method for determining scattering observables, and associated resonance properties, from the underlying theory. In a pair of papers published over the last two years, two of us have extended this approach to apply to relativistic three-particle scattering states. In this talk we summarize recent progress in checking and further extending this result. We describe an extension of the formalism to include systems in which two-to-three transitions can occur. We then present a check of the previously published formalism, in which we reproduce the known finite-volume energy shift of a three-particle bound state.Comment: 9 pages, 3 figures, proceedings for XIIth Quark Confinement and the Hadron Spectrum (CONF12

    Three-particle systems with resonant subprocesses in a finite volume

    Get PDF
    In previous work, we have developed a relativistic, model-independent three-particle quantization condition, but only under the assumption that no poles are present in the two-particle K matrices that appear as scattering subprocesses. Here we lift this restriction, by deriving the quantization condition for identical scalar particles with a G-parity symmetry, in the case that the two-particle K matrix has a pole in the kinematic regime of interest. As in earlier work, our result involves intermediate infinite-volume quantities with no direct physical interpretation, and we show how these are related to the physical three-to-three scattering amplitude by integral equations. This work opens the door to study processes such as a2ρππππa_2 \to \rho \pi \to \pi \pi \pi, in which the ρ\rho is rigorously treated as a resonance state.Comment: 46 pages, 9 figures, JLAB-THY-18-2819, CERN-TH-2018-21

    Numerical study of the relativistic three-body quantization condition in the isotropic approximation

    Get PDF
    We present numerical results showing how our recently proposed relativistic three-particle quantization condition can be used in practice. Using the isotropic (generalized ss-wave) approximation, and keeping only the leading terms in the effective range expansion, we show how the quantization condition can be solved numerically in a straightforward manner. In addition, we show how the integral equations that relate the intermediate three-particle infinite-volume scattering quantity, Kdf,3\mathcal K_{\text{df},3}, to the physical scattering amplitude can be solved at and below threshold. We test our methods by reproducing known analytic results for the 1/L1/L expansion of the threshold state, the volume dependence of three-particle bound-state energies, and the Bethe-Salpeter wavefunctions for these bound states. We also find that certain values of Kdf,3\mathcal K_{\text{df},3} lead to unphysical finite-volume energies, and give a preliminary analysis of these artifacts.Comment: 32 pages, 21 figures, JLAB-THY-18-2657, CERN-TH-2018-046; version 2: corrected typos, updated references, minor stylistic changes---consistent with published versio
    corecore